
m; Fnq,, area of the boundary of the volume zones n and q'; gmn' coefficients of convective heat transfer; N, total num- 

ber of zones; M, total number of C zones; At, time step; Tin' zone temperature at time r i = Ari; | temperature field 

in the interval [r i, ri+ 1 ]; TJ n, value of the zone temperatur e after the j-th iterations; II All, a (N - M) • (N - M) matrix; 

Y~, F. ~, Q* , (N - M) dimensional vectors; ~3, positive constant, ~3 < 1. 
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S OLUTION OF THE S T E A D Y - S T A T E  PROBLEM OF H E A T  

E X C H A N G E  A N D  FLOW OF L U B R I C A N T  IN R A D I A L  

S LIDING B E A R I N G S  WITH S E L F - A L I G N I N G  SEGMENTS 

V. V. Rukhlinski i ,  L. A.  Gura, and O. M. Borisenko UDC 621.165 

The article describes a method based on the use of implicit finite-difference schemes, and it presents the 
results of the numerical solution of the problem of heat and exchange and flow of lubricant in multisegment 
radial sliding bearings. 

The numerical solution of the problem of liquid flow and heat exchange in radial segmental sliding bearings is based 
on the welt-known assumptions of Reynolds' hydrodynamic theory of lubrication. The physical parameters of oil were 
taken as constant, and they were determined according to the mean oil temperature in the gap, which was found from the 
solution of the heat-transfer equation. 

The initial system of differential equations describing the intensity of heat transfer of the shaft in radial sliding 
bearings has the following form in dimensionless values: 

a (h oPt. o (h OPl=6~ (1) 
t, 0z ) o---7' 

8t ( v y Oh '~ 8t :)t 1 0at Eo [ (  Ou I e ( &e 121 - -  ' - -  - -  tt - - -  - -  + w  , (2) 
u Ox -7 It h Ox ]~-y Oz Peh e Oy z q -~eh2L\  Oy ] + \  Oy ) j 

RIL l dxez. Nu 
a ~ h ( l - - t s )  o ' -@Y u=0 (3) 

The coordinate Y is reckoned from the surface of the shaft, X from the horizontal axis, and Z from one of the end faces 
of the bearing. 

The boundary conditions for solving the problem had the following form: 
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o r  

for pressures 

for speeds 

for temperatures 

P ((hi, 0 < z < L / R )  = p (q~j, 0 < z < L/R) = pa, 

p (x, O) = p (x, L/R) = 0; 
(4) 

u (x, 0, z ) =  1, v(x, 0, z ) =  ~v(x, 0, z ) =  0, (5) 

u(x, 1, z ) = v ( x ,  1, z ) = ~ ( x ,  1, z) - 0 ;  

t(g)~j, V > 0 ,  z ) - 0  

t(~plj, g, z ) = l - - 2 g + y 2 ;  oxO~t x=~,j-- Ot 
Ox �9 ,=~2j-A, (6) 

~--IOt [ _ Ot = 0; l at t q16 
l ( x ' O ' z ) =  l; oz I~=o Oz , z = ~  h Oy lu=' ) ~ ( T w - - r l )  

2R 

It follows from expressions (4) that the pressure on the edges of the segments is taken as constant across the width 
of the beating and equal to the initial pressure, and on the end faces as equal as zero. For finding the speeds, we use the 
conditions of adhesion and of  the impermeability of  solid boundaries (5). 

Whereas the boundary conditions for pressures and the component of  the speed are generally accepted, specifying 
the conditions of unambiguity for determining the temperatures is a very complex problem. Specifying an oil temperature 
that is constant across the thickness for y > 0 in the sections of  the front edges is a characteristic trait of segments with 
individual lubricant supply. In this case the used hot oil in the gaps between the segments, under the effect of the centri- 
fugal forces, is detached from the shaft surface, and the formation of the lubricant film occurs within the boundaries of 
each segment only by the newly supplied lubricant. The parabolic temperature distribution corresponds better to the 
design of bearings with intersegmental spaces flooded with oil, where the hot  oil is not completely removed from the 
surface of the shaft; this affects the formation of the inlet profile of the temperatures in the subsequent segment. 

It was assumed that in the end face sections of  bearings, with z = 0 and z = L/R, convection is the sole mechanism 
of heat transfer in a liquid. With y = 1, the specific heat flow on the working surfaces of the segments was taken equal to 
a constant magnitude determined from the conditions of their cooling. With x = ~0., the temperature at the outlet edges 
was found from the condition of conserving the rate of  its change in the vicinity J J t h e  boundary. 

The projections of the speeds on the axes are determined from the expressions obtained by integrating the equations 
of motions taking into account the boundary conditions (5): 

h Op ) 
u = ( 1 - - y )  ~ o ~ J + l  , (7) 

v =  4 Ox 12 " \ ~  @ Oz z ] 2 Ox ' (8) 

h a Op 
= - - - - y ( 1 - ~ ) .  

2 Oz (9) 

In the mathematical formulation of the problem, one of the principal questions is the specification of the distributions of 
the thickness of the lubricant according to segments. The load-bearing capacity, the damping properties, and the tempera- 
ture state of the bearing depend on the distribution of the thicknesses, i.e., on the position of  the segments relative to the 
shaft. 

For the cylindrical bore of the segments and for the rigid shaft we write the distribution of the thicknesses of  the 
lubricant layer  in the adopted system of coordinates in the following way: 

h =  l + e s i n ( x - - % ) + A h .  (10) 

The value of  2xh was determined from the condition that the minimum thickness is equal to (1 - e) and is the same for 
all segments. The position of the section�9 with minimum thickness for load-bearing segments was found  from the condition 
of maximum loadcapacity,  for the upper segments it was taken to coincide with the outlet edge of the segment. The 
maximum thickness of the film in the section of the inlet edge of the upper segments was equal to the value obtained for 
the cylindrical bore, i.e., from the condition Ah = 0. 
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The solution of Eqs. (1)-(3) was found in finite differences by the establishment method using locally uni- 
dimensional schemes [ 1 ]. 

The spatial network had 157 nodes along the x axis, 6 across the thickness of the lubricant layer, and 11 across the 
width of the bearing. With a view to the symmetry of the boundary conditions (4)-(6) relative to the central section, the 
distribution of pressures, speeds, and temperatures of the liquid lubricant was determined for half the bearing. The 
numerical solution of Eqs. (1) and (2) was effected by using implicit difference methods. 

Approximation of the derivatives in the Reynolds equation was carried out by the three-point scheme which ensured 
absolute stability of the calculation. 

The lack of derivatives of second order of the temperature with respect to the longitudinal coordinates in the heat 
transfer equation has the consequence that for their solution by an implicit scheme the remaining derivatives of first order 
cannot be replaced by the symmetric difference because then the conditions of positive approximation, which are indispen- 
sable for the stability of the method of matching, are not satisfied. The known methods of obtaining stable implicit 
difference schemes for solving boundary layer problems are very cumbersome, they require very t'me space-time networks, 
and they lead to the loss of the principal advantage of implicit schemes: economy. 

To overcome these difficulties, the approximation of the derivatives of first order in the i-th mode with respect to 
the coordinates x and z was effected by using difference combinations of the type 

oxOt I=i --3ti_~+4t~--ti.12Ax 13+ 3ti+t--4h+h_12Ax (1--~), (11) 

where the terms are the derivatives in the (i - 1)-st and (i + 1)-st nodes written with weight ~ according to known three- 
point one-sided patterns, forward and backward, respectively, with an error O(Ax2). 

Algebraic transformations yield the working formula 

Ot I (1 - -  413) ti_l--4 (1 - -  213)ti -t- (3--  413) t~+1 (12) 
Ox li= 2Ax 

The values of the weight may change from 0 to 1. For/3 = 0.5 :we obtain the ordinary symmetric approximation 
with the smallest error O(Ax2). Depending on the sign of the coefficient in front of the derivative, the complex (12) 
satisfies the conditions of stability when 13 ~ 0.25 or/3 1> 0.75. A change of/3 during the process of matching does not 
affect the stability of the solution. 

The use of expression (12) makes it possible to obtain stable implicit schemes for solving difference analogs of 
differential equations of first and second orders by the method of matching. In that case, for derivatives of second order, 
an ordinary stable symmetric approximation with an error of O(Ax 2) is maintained. 

The calculation scheme using the method of matching presupposes the existence of two boundary conditions along 
each axis of coordinates including the X and Z axes, along which Eq. (2) is parabofic. This equation is approximate, it was 
obtained from a more accurate equation containing derivatives of second order with coefficients that were negligibly small 
compared with the coefficients of the derivatives of first order. A comparison of the numerical solutions of  Eq. (2) and 
of the refined equation containing derivatives of second order with respect to the longitudinal coordinates showed that the 
results practically coincides with each other. On the other hand, the more complex equation entails unjustificable complica- 
tions of the Algol program and longer computer time. 

The use of the described method for solving the energy equation (2) confirmed that the given scheme is reliable 
and efficient, yet retains all the positive traits of implicit difference methods. 

Equations (1)-(3) were solved successively for each segment. The position of the shaft in the bearing with specified 
eccentricity, characterized by the load angle, were found from the condition of equilibrium which had the form: 

2~ Lm (13) 
J I psinxdzdx = ~l~, 

2~ L/Re (14) 
J p COS xdzdx O. 

b 0 
The conditions of  equilibrium separately for each segment served for determining the angular coordinate of its point of 
support (edge of oscillation) 
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Fig. 1. Distributions of  the relative thicknesses of the lubri- 
cant layer (1), of  the dimensionless pressures (2) and tempera- 
tures on the working surfaces of  the.segments found for t@l i, 
y > 0 ,  z) = 0 ( 3 )  a n d t ( ~ l  j , y , z ) =  1 - 2 y  +y2  (4) in the 

central section of a five-segment beating. 

q~ L /R  

"3" ,i" ~ sis (~ - %,) d~d~ 
~PJo= =- q>.j~ -~- arcsin oii o 

~i2 L /R  

t I  dzdx 
~11 o 

(15) 

During the process of solving the problem with a computer,  it was envisaged that the consumption of lubricant would be 
determined for each segment 

~2 ] L /R  

1 ha Op dx ' O p [  dz § (16) 
g ' = T  a= ==0 ~ - - ~  ox j,:,,, - 7  

~o~d O . 

and the frictional forces on the surface of the shaft 

%iL/R h 20p _)_1 
l i I Ox dzdx. 

i ;  = - T ~ ., h (17) 

0~ U 0 

The integrals in (13)-(17) were calculated by methods of  numerical integration. 

With specified e, ~l.J, rf,2~, R, L, 8, o~, P1, Tl, T~, ql for the selected oil and the number of segments, we found the 

pressure, velocity, and temperature fields, the load anne,  the load capacity coefficient, frictional losses, lubricant consump- 
tion, specific heat  flows, and heat transfer coefficients. 

The described method was applied to the calculation of  three-, four-, five-, and six-segment beatings. The obtained 
results are presented in Table 1. In all cases the segments were arranged symmetrically about the vertical axis. The angular 
extent  of the segments was determined from the expression 3' = 1.5 ~r/k, where k is the number of segments. The shaft 
diameter was taken to be 0.5 m, the width of  the beating 0.4 m, and there was not heat flow on the working surfaces of  
the segments. The physical parameters of  the lubricant were found from the  exponential dependences obtained by approxi- 
mation of  the tabulated data of  [2] for oil "Turbinnoe-22." As the characteristic temperature for determining the physical 
parameters in the energy/equation and in the dimensionless integral characteristics we took the mean flow rate temperature 
of the oil in the beating. Such an approach yields acceptable agreement between calculation and experimental data, as was 
previously demonstrated in [3] for radial beatings with 360 ~ contact. 

A comparison of the results of  the numerical investigations shows that bearings with self-aligning segments have a 
larger load capacity with eccentricities e > 0.85 than solid beatings [3], and a smaller load capacity when the eccentricity is 
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Fig. 2, Temperature distribution at the outlet  from the 
fourth segment of  a five-segment beating across the thick- 
ness of  the lubricant layer in the central section (a) and 
across the width of the segment on its working surface 
(b) in dependence, on the rotational frequency of the 
shaft: 1) n = 1000 rpm; 2) 1500; 3) 2500; 4) 3000; 5) 
5000. T, ~ 

~I 06 ---- 
i ! 

"li' 
60 70 80 90 

l 
J 

L 

a 

6z/ [ 1200 

6E1" 800 

60 t 300 

58 L ~O0 
1ooo 2000 3000 ~000 n 

Fig. 3. Dependences of  the averaged heat transfer coefficients and oil temp- 
eratures in a five-segment bearing on the temperature of  the shaft journal (a) 
and on the rotational frequency (b). T w, ~ n, rpm; a , W / m  2-~ Tf, ~ 

is small. This indicates that they have good damping properties and high efficiency under heavy loads. 

When the frictional losses in ordinary and in multisegment radial sliding bearings are to be compared, the flow 
regimes of the lubricant must be taken into account. If the oil flow is laminar in both types of  bearing, then the solid 
beatings are more economical. The values of  F in Table 1 exceed the frictional losses in solid bearings by 40-50%. This is 
due to the appearance of zones of  elevated hydrodynamic pressures on the upper segments and the associated additional 
losses of power. I t  therefore makes sense to use segmental bearings when in solid beatings there are no more possibilities of  
laminarizing flow and increase their damping properties by improved design. 

The distributions of  the relative thicknesses of  the lubricant film, of  the dimensionless pressure and temperature 
values of the working surface of  the segments in the central section of a five-segment bearing are presented in Fig. 1. 

It can be seen from a comparison of  the results of  solving the heat  transfer equation with different boundary condi- 
tions at the entrance to a segment that when the temperature distribution across the thickness of  the lubricant on lhe  inlet 
edges of the segments is parabolic, the maximum temperatures in the gaps are 3-7 ~ higher than when t(~011, y > 0, z) = 0 is 

specified. This shows that i t  is advisable to arrange for removal of the hot  oil ahead of  the entrance to the segment. 

Increased circumferential speed of  the shaft leads to increased oil temperature in the working gaps of  the segments 
and to lower intensity of  heat transfer on the surface of the shaft (Fig. 2). The same effect occurs when the load is 
increased. 

An important  parameter characterizing the thermal state of the bearing is the surface temperature T w of the shaft 

which is introduced as a specified magnitude into the formulation of the problem, but which in reality is dependent  on the 
operating regime of the bearing and on the external conditions of heat  supply to the shaft. Study of  the effect of  T w on 

the intensity of heat transfer of  the shaft (Fig. 3) showed that there exists such a shaft temperature (which is usually higher 
than the oil temperature at the inlet to the bearing) at which the directions of  the heat flows on the surface of the shaft 
change. For  instance, for the calculated five-segment bearing (Fig. 2) at T w = 66.8~ the heat  transfer coefficient and the 

mean specific heat flow are equal to zero. As the positive direction of the heat flow we took  the heat supply from the 

shaft to the oil. 
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Fig. 4. Distributions of  the specific heat flows (W/m 2 ) 
averaged over the circumference of a five-speed bearing 
in dependence.on the circumferential speed (a: 1) I500 
rpm; 2) 2000; 3) 3000; 4) 5000) and on the shaft 
temperature (b: 1) 70~ 2) 80; 3) 90; 4) 100). 

The distributions of  the mean specific heat flows across the width of a five-segment bearing in dependence on the 
circumferential speed and the surface temperature of the shaft are presented in Fig. 4. 

Thus, the use of the described method of numerical investigation of  heat exchange and flow of lubricant makes it 
possible to carry out a detailed qualitative and quantitative analysis of  the intensity of the thermophysical processes 
occurring in liquid-friction bearings with self-aligning segments with a view to the principal reNme and geometric parameters 
of  their operation. 

NOTATION 

X, Y, Z, running coordinates; x, y, z, dimensionless coordinates; L, width of  the segment; R, radius of the shaft; H, 

running thickness of  the lubricant; h = H/g, dimensionless thickness of a layer of  lubricant; 6, mean radial gap; u = U/coR; 

v = V/co6; w = W/~R, dimensionless speeds in the directions of  the x, y, z axes, respectively; P, p = P~02 [/~co, dimensional 

and dimensionless pressure at an arbitrary point; ~ = 6/R, mean relative gap; P I '  oil pressure at the inlet to a segment; T, 

running temperature; T1, I~, T w, oil temperature at the inlet to a segment, at the drain from the bearing, and on the 

surface of the shaft, respectively; Tf, mean flow-rate temperature; t = (T - T )/(T w - T 1), dimensionless oil temperature 

at an arbitrary point; Nu = ~d/k, Nusselt number; Pe = ~62/a, Peclet number; Re = cov2/v, Reynolds number; Ec = 

~R~/cp (r,~-- T~) , Eckert number; c~, mean heat-transfer coefficient; Cp, specific heat of  the oil; O, density of  the oil; X, 

thermal conductivity; v, coefficient of  kinematic viscosity; a, thermal diffusivity; ~0H, load angle; ~ai, ~P,~. ~,~ , angular 

coordinates of the beginning, the end, and the support of  the j-th segment, respectively; q l '  mean specific heat flow on the 

working surface of  a segment; e = E/f ,  relative eccentricity; Ah, change in the thickness of  the lubricant in comparison with 

the cylindrical bore due to a turn of the segment induced by hydrodynamic forces; QH' vertical load on the bearing; Gj, 

gj = ~ / p ~ 6 R ,  mass and dimensionless flow rates of  lubricant, respectively, through the gap of  the j-th segment; Fj, fj = 

Fj~/gco R 2, dimensional and dimensionless friction force, respectively; n~ = Q~,~-/a~/?L , summary load capacity coefficient 

of the bearing; n~i. n~J , dimensionless projections of the resulting forces of  the pressures on the vertical and horizontal 

axes of the j-th segment, respectively. 
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